

Areas of interest

Experimental manufacturing

NDT testing for components

Simulation & modelling

AAMF at Harwell

- Co-located with Metrology facility
- ➤ EOS M280 FDR due to switch to M290
- Concept Laser MLab R
- Stratasys Objet 30 Pro
- Fortis 450 Ultem 9085 etc
- Full characterisation
- Simulation and modelling options
- > Joint development with ISIS Neutron Source

AM Design Approaches

Conventional replacement / like for like

Conventional replacement / like for unlike

Integration of two or more conventional components into one

Increased end user benefit from integration

Complexity

Conventional Replacement – Like for Like

Courtesy of Airbus Defence and Space & EOS GmbH

- Airbus Telecommunications satellite mounts to secure feeder horns to satellite body
- Manufactured by an EOS M280 SLM system in Titanium
- Withstands thermal variation 180 to +150 °C
- Reduced production time
- Mass reduction of 300g per bracket

Conventional Replacement – Like for Unlike

Courtesy of UK Space Agency & 3T RPD Ltd

- Telemetry and telecommands antenna standoffs for UK Space Agency satellite programme
- Manufactured in Aluminium by SLM
- Four parts reduced into one, through optimisation

- Reduction in 35% from original mass
- 40% stiffer than original components
- Due to fly in Q3 2015

Integration of two or more components

- Mass spectrometer vacuum chamber for future ESA Solar Orbiter
- Integration of eight components into one assembly
- Reduction in joints, seams, mass and volume
- Inclusion of vacuum and optical windows.
- Manufactured through Polyjet and SLM - potential for ceramic binding.

NDT for AM

- Quantification Measure knowns and unknowns
- Qualification Ensure part/s are to specification
- Verification Establish that processes are correct
- Lifetime / legacy Repeat measurements

Conditions of interest

Insitu SLM Build

- Insitu measurement of build process
- Realizer 100 in neutron diffraction instrument
- Measurement of component build during sintering
- ➤ Match temporal duration build vs. acquisition
- Improvement understanding of process
- Optimisation of build parameters
- Aligned to ASTM F42 work package / definition

Parameter development

- SS316 process development
- Focus on material properties
- M280 FDR abilities for high aspect ratio structures
- Transition to RFMs

Embedded functionality

Embedded functionality:

- Heat pipes
- Antennas / RF circuits
- Ablation protection
- Wiring harnesses
- Sensors

Conventional satellite component assembly

Encapsulated components via RP technology

Heat exchanger / Stirling heat engine

- Conceptual heat exchange
- > Full component integration
- ➤ Built in SS316 intent to move to Inc 718
- Pressure tested with He to 50Bar, Feb 2016

Freeform Mirror design

- Manufactured in plastic
- Desired surface finish of <100nm</p>
- Complex surfaces achievable with associate benefits from equal thermal expansion, shorter integration etc
- Plated with 100μm Au
- Surface roughness <5μm</p>

3d Concept CubeSat

- Rapid, inexpensive design & manufacture of highly integrated CubeSat structure:
 - Snap-fit components
 - Slot-in main electronics stack
 - Possibility for integrated propulsion system
 - Potential to build everything encapsulated e.g. incorporated harnesses, sensors
 - Partnership with Aerospace Corp for launch opportunities
 proxy mission / inspector

3d Concept CubeSat

Start with a 'qualified' structure/mounting system (includes board and PV rails)

A CubeSat 'stack' is designed/assembled

Geometry (of structure) is tweaked to match the actual structure, and re-simulated.

Assuming the right FOS, the structure can be 'printed' and flown

Stack is integrated (in CAD) to determine any holes that need to be made for access

Simulation and Modelling

Cumulative Shrinkage Results

Observations:

- Greatest displacement at start of long scan lines
- Cancelling effect near end of scan line

Accuracy with simple shapes

Stress at top in the model: 14k

Applied stress: 24k

Resultant tension= 24-14=10k

Example

Support structure Example: Standard

Experiment Sample

FEM Stress calculation

Stress based optimized support structure(Showing in 3D and 2D)

Supports structure with non-uniform thickness

Supports structure with non-uniform spacing (single bead wall)

Future interests

- Vary machine parameters during build to optimise final stress state
- Predict and include distortion effect in build geometry
- Exploit beneficial residual stress and texture, rather than minimising
- Alloys designed for additive manufacturing
- In orbit construction spacecraft and structures
- Machine design and manufacturer small systems / WAAM
- Propulsion systems printed solid rocket boosters

mike.curtis-rouse@stfc.ac.uk