2019 OPTICON TDF MEETING

Manolis Xilouris
Research Director
IAASARS/NOA
WHERE WE ARE

Helmos Observatory
2.3 m telescope (2007)
Altitude 2340 m
220 km west of Athens

Kryoneri Observatory
1.2 m telescope (1975)
Altitude 930 m
130 km west of Athens
HELLOS OBSERVATORY SITE

- Ski lifts
- Guest house
- Control room
- DIMM telescope
- Aristarchos telescope
Driving from Kalavryta ski center to Helmos Observatory
Driving from Kalavryta ski center to Helmos Observatory
Electricity & communications
- Constant electrical power supply (250kVA)
- Two back-up power generators
- Fiber optics network 100 Mbps
- A back-up microwave antenna 30 Mpbs

The quality of the site has been evaluated using meteo data over the past 6 years.
- It is very dark with V band brightness ~21 mag/arcsec²
- It is accessible 9 months per year
- Measured ~60 clear nights during June-November season
- Seeing measurements median ~0.78”, lowest 0.25”
Imaging
- Cassegrain Camera (2k x 2k), with a FOV 5’ x 5’, LN2 cooled
- Full suite of standard wide and narrow band filters.
- RISE2 (1k x 1k) Exoplanet finder (FOV 10’ x 10’) in collaboration with QUB and Liverpool JM Univ.
Spectroscopy
- ATS low-/medium-resolution optical spectrograph (fiber fed, 4270 – 7730 Angstrom)

- Manchester Echelle Optical Spectrometer (TBC)
- Andor iKon-L (2k x 2k → FOV 5.5’x5.5’)
 Order in place, delivery expected in August

- Manchester Wide-Field Camera
 (FOV 27’x27’)
- TEK 4k x 4k CCD
- Full suite of standard wide and narrow band filters.
 Fabrication completed – To be commissioned in 2020
OPTICON archival observations

Since January 1, 2016, the 2.3 Aristarchos telescope is a full member of the OPTICON network and participates in the TNA program, making its instrumentation available to the international community.

The following observations have been performed under OPTICON awarded time. According to OPTICON/H2020 rules the data become public one year after the observations have been obtained.

<table>
<thead>
<tr>
<th>Call</th>
<th>PI</th>
<th>Project title</th>
<th>Date</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017A</td>
<td>Dr Grzegorz Maciejewski</td>
<td>"Precise transit timing for WASP-12 b"</td>
<td>30-31 January, 2017</td>
<td>data1</td>
</tr>
<tr>
<td>2017A</td>
<td>Dr Philippe Rousselot</td>
<td>"What is the origin of the light curve change of 174P / Echedus?"</td>
<td>16-24 January, 2017</td>
<td>data1, data2, data3</td>
</tr>
<tr>
<td>2017B</td>
<td>Prof. Bruno Sicardy</td>
<td>"The stellar occultation by Neptune's satellite Triton"</td>
<td>5-6 October, 2017</td>
<td>data1</td>
</tr>
<tr>
<td>2019A</td>
<td>Mr. Mathew Hooton</td>
<td>Storms or Systematics? Investigating the changing eclipse depth of ultra-hit Jupiter WASP-12b</td>
<td>1,11,12,23,24 January, 2019</td>
<td>data1</td>
</tr>
</tbody>
</table>

2019B Dr. Pawel Zielinski Galactic Black Holes from Gaia astrometry and time-domain photometry 3 nights
The involvement of NOA at OPTICON is critical because:

- It provides direct access to established knowhow on “good practice” methodology in running a facility
- It provides inside information on trends and plans regarding upcoming technology developments
- Facilitates our involvement in science collaborations (i.e., GAIA alerts)
- Brings scientists to our facilities (via TNA) which helps the networking of the local staff and students
- May bring some funding which will help in supporting the operation costs.