

ELT DESIGN STUDY

A European(...+) R&D effort towards ELT enabling technologies

European-wide preparatory work 2004-2007

- ⇒ enable design & construction of a 50-100-m optical/IR telescope in the 2015 horizon.
 - Foster academic & industrial readiness
 - Focus on enabling technologies
 - Clear path for crucial decisions (e.g. site)
 - Cost-consciousness and schedule as high priorities

13 countries, 39 participants, ESO as lead.

42 M€ total, 22 M€ requested to EC

Shares, in % of total estimated budget

Project organisation

Added complexity: sensitive information

⇒ cross-participants confidentiality!

ELT Design Study: highlights

WORK PACKAGES	Concepts	Technology	Tools
Adaptive optics	1 st generation designs Novel AO concepts Algorithms for reconstru	Large format DM ction & control	100-m footprint measurement AO & MCAO simulations
Wavefront control	APE, MAD APE	Alignment metrology Phasing metrology Position sensors Position actuators	WEB (Wind)
Optical fabrication		Segments substrates Large Al mirrors Coatings	(SiC)
Mechanics		Structural ropes Composite structural Magnetic levitation	
System layout	Analysis & modeling		Modeling tools
Site characterization	Large scale experiment Atmosphere beyond L_0		Site measuring tools Site measurements
Instrumentation	Point designs	ADCs	
Operations	Science & observatory operation		
Infrastructure	Enclosure concepts		

oncon, Gent, April 2004

Total cost per WP, k€

FP6 ELT-WP 4000 Wavefront Control

STUDIES, PROTOTYPES AND BREADBOARDS.

WP 4100: Description and classification of wavefront errors

WP 4200: Metrology

WP 4300: Position Actuators

WP 4400: Characterization of image propoerties

WP 4500: Coronography

WP 4600: Active Phasing Experiment (APE)

WP 4800: Wind Evaluation Breadboards (WEB)

WP Manager: L. Noethe (ESO)

WP Deputy: N. Devaney (GRANTECAN)

Wavefront control

Metrology

- Internal alignment system (FOGALE)
- Capacitive or inductance-based position sensors (FOGALE)
- Piston-sensitive wavefront sensing
 - Mach-Zehnder (FOGALE, LAM, ESO)
 - Curvature (IAC)
 - Pyramid (INAF)

All to be tested on-sky (APE)

Position actuators

- ✓ Position actuators for WEB (subcontract)
- ✓ Alternative design / prototyping (Dutch Space)

GOALS

- ✓ Compare the performance of 3 types of wavefront sensors :
 - Curvature
 - Mach-Zehnder
 - Pyrami d
- Test the control of combined active optics & segmentation
 Design & test control softward
 - Design & test control software

For control systems, an alternative to an "intermediate step"

Wind Evaluation Breadboard (WEB)

ricon, Gent. April 2004

WP 05000 Optical Fabrication

OBJECTIVES (TASKS 05100 TO 05400)

- ✓ Development & verification of potentially costand performance-effective materials and processes (e.g. SiC)
- ✓ Optical finishing and edge control
- ✓ Verification of CTE homogeneity of large Aluminum mirrors
- √ High performance reflective coatings

WP Manager: P. Dierickx (ESO)

WP Deputy: D. Walker (UCL)

Optical Fabrication

✓ Substrates:

- Silicon Carbide for segments
 - Lighter, stiffer, cheaper?
 - 4 blanks already produced (ESO contract)
 - 4 additional by ECM
 - Technology still uncertain for segmented apertures (bimetallic effects?)
- Aluminium for large mirrors
 - 1.8-m mirrors produced under ESO contract in 1992
 - Verify their ageing
- ✓ Polishing & testing
 - SiC segments + edges (SESO, REOSC)
 - Edge control (UCL)
- ✓ Coatings (study + samples)

FP6 ELT - WP 6000 mechanics.

STUDIES, PROTOTYPES AND BREADBOARDS.

WP 6100: Structural ropes application for ELT.

WP 6200: Composite structural element for the ELT.

WP 6300: Magnetically levitated systems & linear drives.

WP 6400: Characterization of the friction drive & bearing.

WP Manager: Enzo Brunetto (ESO)

WP Deputy: N.N.

WP 6200 - Composite structural elements

WHY?

✓ All ELT concepts benefits from the reduction of mass of structural elements on critical areas.

SCOPE OF THE STUDY.

- ✓ Define alternative material to steel cylindrical pipes.
- ✓ Define fittings and mechanical interfaces.
- ✓ Define manufacturing and installation methods.
- ✓ Define maintenance criticality and concept.
- ✓ Define suppliers and costs.

Mechanics

✓ Friction drives

(AMOS, ESO)

Adaptive optics

Schedule-deliverables WP 9200

Opticon, Gent, April 2004

10000 - Observatory & science ops

- ✓ The current generation of 8-m class facilities explores new operations paradigms from those of classical observatories.
- ✓ Upcoming large, unique facilities (ALMA) will already enforce further evolution of such paradigms.
- ✓ Technical and scientific operations of an ELT are expected to involve further significant differences.
- ✓ An integrated approach to problems is proposed to ensure that operations exploit the full capabilities of telescope and instrumentation at the highest efficiency.
- ✓ The goal is to generate level one requirements for the telescope based on the astronomical goals and the needs of the auxiliary instrumentation.

11000 Instrumentation

3 POINT DESIGN STUDIES (PDSs: €433k)

- ✓ WFSPEC Wide Field (5 10 arcmin) seeing-limited (or boundary-layer corrected) SPECtrometer (Lyon)
- ✓ MOMSI Optical /NIR Multi-Object & Multi-field Spectrometer & Imager (1-2 arcmin MCAO-corrected FOV) (UK ATC + Durham)
- ✓ MIDIR MID-IR diffraction-limited high-resolution spectrometer/imager (1-2 arcmin MCAO-corrected FOV) (Leiden + MPIA)

and....

...and 6 Small Studies (SSs: €82k)

- ✓ Planet Finder High dynamic-range (coronagraphic) imager/spectrometer (UKATC + Durham, ANU: higher level)
- ✓ HISPEC O/NIR high spectral resolution instrument (AAO+ ANU higher level?)
- ✓ HiTRI High Time Resolution Instrument (UIG)
- ✓ GRB-Catcher Fast-response broad-band imaging spectrometer for transients (AAO)
- ✓ SCUBA-3 (alias SCOWL) Submm imager (UKATC)
- ✓ ADC: Atmospheric Dispersion Correction Basic Study of "AO" aspects of ADC (UK ATC + Durham + AO WP Gp)
- ✓ Innovative instrument designs search (Durham + Oxford)
 - * ALSO: Meudon group seeks to study "Falcon" AO button WF facility

- ✓ Top level ELT requirements (Salinari, Hook)
- ✓ Enclosure & infrastructure concepts (Pescador, Quattri)
- ✓ Standardized site testing equipment & measurements, environmental impact study (Vernin, Munoz, Sarazin)
- ✓ System modeling, development of software tools (andersen, Koch)

Getting ready

...we'll know more in June / July